Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos
نویسندگان
چکیده
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed, by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC). Firstly, a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC). It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search. Secondly, the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima. The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions. The performance of the proposed MPSOC was compared to the MPSO, PSO and GA through eigenvalue analysis, nonlinear time-domain simulation and statistical tests. Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs. The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA, PSO and MPSO.
منابع مشابه
Optimal Tuning of Power System Stabilizers Using Modified Particle Swarm Optimization
This study proposed a novel algorithm to tune and coordinate power system stabilizers (PSSs) in multi-machine power systems. For a multi-machine power system, the coordination of the PSS parameters is generally formulated as an objective function with constraints including the damping ratio and damping factor. A novel hybrid particle swarm optimization (PSO) with the passive congregation algori...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملMulti-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملSolution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کامل